Handling Sparse Data Sets by Applying Contrast Set Mining in Feature Selection
نویسندگان
چکیده
A data set is sparse if the number of samples in a data set is not sufficient to model the data accurately. Recent research emphasized interest in applying data mining and feature selection techniques to real world problems, many of which are characterized as sparse data sets. The purpose of this research is to define new techniques for feature selection in order to improve classification accuracy and reduce the time required for feature selection on sparse data sets. The extensive comparison with benchmarking feature selection techniques on 64 sparse data sets was conducted. Results have shown superiority of contrast set mining techniques in more than 80% of the analysis on sparse data sets. This paper provides a study on the new methodologies and detected superiority in handling data sparsity.
منابع مشابه
Feature Selection for Small Sample Sets with High Dimensional Data Using Heuristic Hybrid Approach
Feature selection can significantly be decisive when analyzing high dimensional data, especially with a small number of samples. Feature extraction methods do not have decent performance in these conditions. With small sample sets and high dimensional data, exploring a large search space and learning from insufficient samples becomes extremely hard. As a result, neural networks and clustering a...
متن کاملA novel feature selection techniques based on contrast set mining
Data classification is a challenging task in era of big data due to high number of features. Feature selection is a step in process of knowledge discovery in data that aims to reduce dimensionality and improve the classification performance. The purpose of this research is to define new techniques for feature selection in order to improve classification accuracy and reduce the time required for...
متن کاملDiagnosis of the disease using an ant colony gene selection method based on information gain ratio using fuzzy rough sets
With the advancement of metagenome data mining science has become focused on microarrays. Microarrays are datasets with a large number of genes that are usually irrelevant to the output class; hence, the process of gene selection or feature selection is essential. So, it follows that you can remove redundant genes and increase the speed and accuracy of classification. After applying the gene se...
متن کاملCredit Card Fraud Detection using Data mining and Statistical Methods
Due to today’s advancement in technology and businesses, fraud detection has become a critical component of financial transactions. Considering vast amounts of data in large datasets, it becomes more difficult to detect fraud transactions manually. In this research, we propose a combined method using both data mining and statistical tasks, utilizing feature selection, resampling and cost-...
متن کاملA hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts
High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- JSW
دوره 11 شماره
صفحات -
تاریخ انتشار 2016